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Abstract 

Tanl (Natural Language Text Analytics) is a suite of tools for text analytics based on the software architecture paradigm 
of data pipelines. Tanl pipelines are data driven, i.e. each stage pulls data from the preceding stage and transforms them 
for use by the next stage. Since data is processed as soon as it becomes available, processing delay is minimized 
improving data throughput. The processing modules can be written in C++ or in Python and can be combined using few 
lines of Python scripts to produce full NLP applications. Tanl provides a set of modules, ranging from tokenization to 
POS tagging, from parsing to NE recognition. A Tanl pipeline can be processed in parallel on a cluster of computers by 
means of a modified version of Hadoop streaming. We present the architecture, its modules and some sample 
applications. 

 

 

Introduction 

Text analytics involves many tasks ranging from simple 

text collection, extraction, and preparation to linguistic 

syntactic and semantic analysis, cross reference analysis, 

intent mining and finally indexing and search. A complete 

system must be able to process textual data of any size and 

structure, to extract words, to classify documents into 

categories (taxonomies or ontologies), and to identify 

semantic relationships. 

A full analytics application requires coordinating and 

combining several tools designed to handle specific 

subtasks. This may be challenging since many of the 

existing tools have been developed independently with 

different requirements and assumptions on how to process 

the data. 

Several suites for NLP (Natural Language Processing) are 

available for performing syntactic and semantic data 

analysis, some as open source and other as commercial 

products. These toolsets can be grouped into two broad 

software architecture categories: 

 Integrated Toolkits: these provide a set of classes and 

methods for each task, and are typically bound to a 

programming language. Applications are 

programmed using compilers and standard 

programming environments. Examples in this 

category are: LingPipe (LingPipe), OpenNlp 

(OpenNLP), NLTK (NLTK). 

 Component Frameworks: these use generic data 

structures, described in a language independent 

formalism, and each tool consumes/produces such 

data; a special compiler transforms the data 

descriptions into types for the target programming 

language. Applications are built using specific 

framework tools. Examples in this category are: 

GATE (GATE), UIMA (UIMA). 

Both GATE and UIMA are based on a workflow software 

architecture, where the framework handles the workflow 

among the processing stages of the application, by means 

of a controller that passes data among the components 

invoking their methods. Each tool accepts and returns the 

same type of data and extends the data it receives by 

adding its own information, as shown using different 

colors in Figure 1: the Tokenizer adds annotations to 

represent the start and end of each token, the PosTagger 

adds annotations representing the POS for each token. 

Since the controller handles the whole processing in a 

single flow, each processing component receives the 

whole collection and returns the whole collection. If the 

collection is big, this might require large amounts of 

memory. 

Figure 1: Workflow Software Architecture. 

In this paper we present an alternative architecture based 

on the notion of data pipeline. The Tanl pipeline (Natural 

Language Text Analytics) uses both generic and specific 

data structures, and components communicate directly 

exchanging data through pipes, as shown in Figure 2. 

Since each tool pulls the data it needs from the previous 

stage of the pipeline, only the minimum amount of data 

passes through the pipeline, therefore reducing the 

memory footprint and improving the throughput. The 

figure shows single documents being passed along, but 

the granularity can be even smaller: for instance a module 

might just require single tokens or single sentences. This 

would be hard to handle with a workflow architecture, 

since the controller does not know which amount of data 
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each tool requires. 

Related work 

We present an overview of some representative NLP 

toolsets and highlight the differences with the approach 

adopted for the Tanl pipeline. 

Integrated Toolkits 

NLTK (Natural Language Toolkit) is a suite of libraries 

and programs written in Python for symbolic and 

statistical natural language processing (Steven et al., 

2009). For each task NLTK provides a specific API, 

implemented by several alternative modules. For example 

there are several chunker modules providing the 

ChunkParserI interface, classifier modules providing the 

ClassifierI interface, etc. Each interface specifies 

different data types, for instance the ChunkParserI 

interface operates on tokens represented as tuples (word, 

tag), the ParserI interface accepts a string and returns a 

Tree. Since many modules were developed independently, 

sometimes they provide their own API that extends the 

generic one. For instance one implementation of a 

dependency parser requires as input two lists, a list of 

tokens and a list of tags, another implementation operates 

on files, hence it creates an intermediate temporary file. 

Workflow Frameworks 

GATE (General Architecture for Text Engineering) is a 

Java framework organized according to three concepts: 

language resources, processing resources and the 

controller. A GATE application handles the following 

types of data: 

 Features: a set of  name/values pairs; 

 Annotation: consists of a tuple (start, end, type, 

features), the start and end character positions in the 

text, the type of the annotation and the features 

associated to the annotation; 

 Document: consists of a triple (content, annotations, 

features), where the content is the text of the 

document, annotations are the annotations in the 

document and features are those associated to the 

document. 

 Corpus: a list of Documents. 

In the following example, two processing resources are 

created (a Tokenizer and a PosTagger), a language 

resource is opened (a Corpus) and a controller is created 

of type SerialAnalyserController. The language and 

processing resources are supplied to the controller which 

supervises and coordinates the overall workflow: at each 

analysis step it passes data to a processing resource, gets 

back the enriched results and passes them along to the 

next step. 

SerialAnalyserController sac = 

   Factory.createResource( 

                "SerialAnalyserController", …); 

FeatureMap params = Factory.newFeatureMap(); 

sac.add(Factory.createResource(“Tokeniser”, 

        params)); 

sac.add(Factory.createResource(“PosTagger”, 

        params)); 

Corpus corpus = …; 

sac.setCorpus(corpus); 

sac.execute(); 

UIMA (Unstructured Information Management 

Architecture) is a general framework for the analysis of 

text and other media. The fundamental UIMA data model 

is called Common Analysis Structure (CAS): it provides 

data modeling, definition and retrieval facilities for the 

annotations stored in it. Annotations are defined in a 

hierarchically organized type system rooted in a basic 

type that contains the start and end position in the 

document as well as a set of features. Processing is 

performed by Analysis Engines (AE) according to a 

simple I/O logical interface model: each AE gets a CAS as 

input and produces a CAS as output. Typically each AE 

analyzes a CAS containing a document and adds more 

metadata to the CAS structure. 

Each UIMA component, written in Java or C++, 

implements interfaces defined by the framework and 

provides self-describing metadata via XML descriptor 

files. An application can be created by joining together 

various components as shown in the following example.  

AnalysisEngine tokAnnotator = 

                    produceAnalysisEngine(…); 

AnalysisEngine posAnnotator = 

                    produceAnalysisEngine(…); 

 

ArrayList<AnalysisEngineMetaData> mdl = 

                      new ArrayList<…>(); 

mdl.add(tokAnnot.getAnalysisEngineMetaData()); 

mdl.add(posAnnot.getAnalysisEngineMetaData()); 

 

CAS aCAS = createCAS(mdl); 

aCAS.setDocumentText(getTextFromFile(…)); 

 

tokenAnnotator.process(aCAS); 

posAnnotator.process(aCAS); 

Two AEs are created, a tokenizer and a POS tagger. Then 

a CAS is created that contains both metadata from the 

tokenizer and the POS tagger. The CAS is given to both 

the AEs in sequence and each adds its own annotations. 

The framework manages the AEs and the data flow 

between them. 
A CAS Consumer processes the CAS produced by an AE. 

Tokenizer 

PosTagger 

Figure 2: Tanl data pipeline. 

http://nltk.googlecode.com/svn/trunk/doc/api/nltk.chunk.api.ChunkParserI-class.html
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.classify.api.ClassifierI-class.html
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.chunk.api.ChunkParserI-class.html


For example one can collect all annotations of type 
Entity with the following code:  

ArrayList<String> entities = new …; 

JFSIndexRepository idx = 

    CAS…getJFIndexRepository(); 

Iterator<Entity> it = 

idx.getAnnotationIndex(Entity.type).iterator()

; 

 

while (it.hasNext()) { 

  Entity en = it.next(); 

  entities.add(en.getCoveredText()); 

} 

UIMA additionally provides capabilities to wrap 

components as network services. 
The JULIES NLP Toolsuite consists in a collection of 
UIMA components (JULIES NLP). 

Tanl design 

The Tanl architecture is based on a data pipeline paradigm 

(Figure 2) and allows integrating modules written in 

different languages.  

The approach has the advantage that each component is 

directly connected to the other ones through pipes, so it is 

not necessary to wait until the end of one processing phase 

before starting the next one. As a tool produces the first 

result it is immediately passed to the next one through the 

pipeline without producing intermediate data structures. 

Another advantage of this approach is that it is possible to 

compose a Tanl pipeline using a general scripting 

language, for example Python or Perl, instead of 

introducing ad-hoc tools. 

Most of the Tanl tools exploit quantitative and statistical 

machine learning methods and they require an annotated 

training corpus for creating statistical models of the data. 

Software architecture 

Pipeline 
The pipeline components can be distinguished into three 
basic types:  

 Source: creates an initial pipe (e.g. a document reader, 

reading from a text file and creating a stream of tokens 

to be sent through the pipeline); 

 Transform: receives data from one pipe and produces 

output on another pipe; 

 Sink: consumes the output of a pipe. 

For example a source can be created as an instance of 

SentenceSplitter and connected in pipe to an input 

stream: 

ss = SentenceSplitter('ita.punkt').pipe(stdin) 

The pipe can then be connected to other tools performing 

various tasks such as tokenization, POS tagging and 

parsing as follows: 

wt = Tokenizer().pipe(ss) 

pt = PosTagger('italian.pos').pipe(wt) 

pa = Parser.create('italian.MLP').pipe(pt) 

Each line in the above example represents a 

transformation stage in the pipeline. No processing of 

data happens while the pipeline is being built. 

Processing in the assembled pipeline only starts when a 

sink is connected to the pipeline and starts drawing items 

from it, in a fully data-driven process. Each stage in the 

pipeline, when requested for the next item, requests items 

from its preceding stage in order to produce the next 

output. 

A sink can just be defined through a standard Python 

iterator pulling data from the last stage of the pipeline: 

ret = "" 

for s in pa: 

   ret += string(s) + "\n" 

return ret 

Using a general purpose scripting language for 

composing the pipeline avoids the need for compilers and 

other development tools. Special processing can be added 

at any stage of the pipeline for whatever need with a few 

lines of code and exploiting the facilities of Python. 

For example, if one needs to monitor what is happening at 

a certain stage in the pipeline, a tee component can be 

added for analyzing the items passing through that stage. 

Here is an example of a tee used for printing all items after 

the POS tagging stage: 

pt = PosTagger('italian.pos').pipe(wt) 

tee = Tee(printSink, pt) 

pa = Parser.create('italian.MLP').pipe(tee) 

The first argument to the Tee constructor is a sink through 
which items have to be pushed. However, since sinks 
behave in a pull mode, the Tee has to create an inversion 
of control, turning a sink into a pipe, by exploiting the 
functional mechanisms of Python. 

class Tee: 

    def __init__(self, func, arg): 

        self.func = func 

        self.arg = arg 

 

    def next(self): 

        aux = self.arg.next() 

        func(aux) 

        return aux 

The next method of the Tee applies the function to the 
item (in this case the printing function) before passing the 
item itself to the next module in the pipeline. 
An alternative solution would be to run sinks within 
separate threads and adopting an asynchronous streaming 
model, where each consumer processes data at its own 
pace. This however involves providing buffering in the 
components, partly defeating the purpose of a data driven 
pipeline, where data is produced only when requested and 
processed immediately. 
A disadvantage of an integrated multi-language pipeline 
is dealing with debugging: since at the scripting language 
level the pipeline components are only visible as black 
boxes, it is hard to step into their execution for debugging 
code. An instrumented version of the Python runtime is 
required in order to start a process in debugging mode. 

Metadata handling 

As data passes through a pipeline, global or specific 

metadata might need to be collected. For example, 

Wikipedia articles contain metadata information such as 



hypertext links, internal references as well as internal 

document structure such as titles and sections. These data 

are useful for certain modules of the pipeline, but 

unnecessary or unmanageable for others. 

Workflow systems like GATE or UIMA store these as 

annotations in a global structure like the CAS. Since in 

Tanl items are passed along the pipe, there is no place to 

store global data. 

Our solution consists in storing metadata in the tokens, 

using a field called context. A context contains a set of 

key/value pairs representing metadata. Contexts can be 

nested, referring to a parent context, for representing 

nested structures such as sections within documents or 

XML trees. Tokens that belong to the same context share 

the same context object, so that memory overhead is 

reduced, even using a distributed representation rather 

than a global structure.  

Implementation 

Enumerators and Tokens 

Each module of the Tanl pipeline consumes a stream 

produced by a previous module and produces a stream.  

Streams consist of tokens or combinations of tokens, e.g. 

sentences which are sequence of tokens. 

Tokens are the basic data structure type that all 

components manipulate. The token data structure was 

designed to be extensible, so that each tool can add to it its 

own annotations, which are passed along to later stages. 

A token contains a string that represents its form and an 

arbitrary number of attributes and links. Attributes are 

simple key/value pairs, while links are labeled arcs 

referring to other tokens through their id: 

struct Token { 

  string     form;    ///< word form 

  Attributes  attributes; 

  Links      links; 

  Context*   context; ///< context 

}; 

 

struct Link { 

  int    target; ///< the ID of the target  

  string label;  ///< the label for the link 

}; 

In the implementation of attributes though, we avoid the 

naive solution of using a hash table, since this would 

entail a significant cost for each token: instead the token 

only contains the attribute values and an index of attribute 

names is used to retrieve an attribute by name. The index 

is shared among all the tokens in a Corpus. 

A Corpus represents the common aspects of a collection 

of documents, including the tongue, the list of token 

attributes, the attribute name index, the file format and it 

also provides methods for writing and reading sentences 

from corpus documents. 

A stream is defined through a generic class Enumerator 

that provides methods to advance to the next item and to 

access it: 

template <class T> 

class Enumerator { 

public: 

  virtual bool    MoveNext() = 0; 

 

  virtual T       Current() = 0; 

 

  virtual void    Reset() {} 

}; 

Listing 1: Generic Enumerator interface 

Each module provides an interface for connecting to a 

pipeline: 

template <class Tin, Tout> 

struct IPipe { 

   Enumerator<Tout>* pipe(Enumerator<Tin>&); 

}; 

Listing 2: Pipeline interface 

Language Integration 
C++ modules can be invoked from scripting languages by 
means of wrappers created with SWIG (SWIG), an 
automated tool for generating wrappers directly from 
code. In particular Tanl provides predefined wrappers for 
Python. 

C++ Enumerators as Python iterators 

SWIG allows exposing C++ objects and methods to 

Python, but an even tighter integration is provided that 

allows operating on C++ objects in a more convenient 

way. In particular the standard Python iterator constructs, 

for instance for x in pipe: …x…, can be used to process 

pipeline streams. Since the Python iterator protocol 

consists of a single method next() and termination is 

obtained by raising an exception, a magic trick is required 

in the SWIG code in order to conform to this protocol: 

%exception Tanl::Enumerator<Item>::next() { 

  $action 

  if (!result) { 

    PyErr_SetObject(PyExc_StopIteration, 

                    Py_None); 

    return NULL; 

  } 

}; 

This SWIG notation is used to add a few lines to the 
wrapper for method next() that will raise the required 
exception. 

Memory management 

Since objects are passed between C++ and Python, stored 

within wrappers, memory must be managed properly so 

that objects are released when no longer in use. This is 

normally handled by telling to SWIG which objects must 

remain under control by Python. Python uses reference 

counting, and when an object is no longer accessible, it 

automatically calls its C++ destructor. 

However there are cases where this mechanism is not 

sufficient, for example when a pipe is created like this: 

pp = Parser.create("model").pipe(sr) 

both a parser object and a parser proxy that wraps it are 

created. Then a pipe is created which refers to the parser 



object and assigned to the variable pp. The parser should 

survive as long as pp exists. However Python destroys the 

parser proxy, since it has no references to it, and calls the 

parser C++ destructor. In order to avoid this, a reference 

count is added to the C++ parser object, reflecting the 

number of Python objects referring to it. The C++ 

destructor is only invoked when this count goes to 0. In 

order to maintain this counter, it must be incremented 

when the pipe is created from Python. This can be done in 

SWIG with the following rule: 

%exception Parser::pipe { 

  $action 

  arg1->incRef();      // arg1 is the parser object 

} 

When the count of the pipe proxy reaches zero, Python 

calls the pipe destructor. 

Similarly, the parser counter must be decremented when 

the pipe proxy that embeds the parser gets destroyed. This 

is done with: 

%feature("unRef") 

Tanl::Enumerator<Tanl::Sentence*> 

"$this->Dispose();" 

which will call the following method on the pipe: 

void ParserPipe::Dispose() { parser.decRef(); 

                             delete this; } 

that will decrement/release the parser before deleting the 

pipe. Finally, in order to keep in synch the reference count 

of the parser proxy, it must be updated whenever Python 

creates a reference to it, by using these SWIG rules: 

%feature("ref") Parse "$this->incRef();" 

%feature("unref") Parse "$this->decRef();" 

A reference count mechanism is also required to manage 

Context objects used in tokens, since their lifetime 

duration is independent from that of the token where they 

appear. 

Map Reduce 

A Tanl pipeline can be processed in parallel using the 

Map/Reduce pattern, for instance using Apache Hadoop 

(Hadoop). The data to be processed is partitioned into 

subsets, each of which is assigned for processing to a node 

in the cluster. 

The mapper and reducer functions are normally written in 

Java, but the framework also provides a facility called 

Hadoop streaming that allows running any executable as a 

mapper or reducer. 

Unfortunately the standard implementation of Hadoop 

streaming does not ensure that the outputs of each mapper 

are combined by the reducer preserving the original order. 

To overcome this problem we modified the 

implementation (Tanl Hadoop Streaming) by adding a 

sequence number to each document passed to the mapper 

and introducing a reducer that uses these numbers for 

recombining the documents in the original order. 

 

Pipeline Modules 

The following modules are currently available as part of 

the Tanl pipeline: 

 Sentence Splitter: splits the text into sentences, 

producing an enumerator of strings, each representing 

a sentence. The module is written in Python and is 

based on the Punkt Tokenizer from the NLTK suite, 

which implements the technique by Kiss and Strunk 

(Kiss & Strunk, 2006). 

 Word Tokenizer: deals with the segmentation of a 

sentence into tokens, producing a stream of vector of 

tokens. The module consists of C++ code produced 

using Quex (Quex), a generator of lexical analyzers, 

capable of handling Unicode characters. 

 Word Aggregator: combines polyrematic expressions 

of common use into a single token (e.g. “a meno che” 

becomes “a_meno_che”). 

 POS Tagger: enriches the structure Token representing 

a token within a sentence with attributes representing 

the PoS and lemma. Two alternative taggers are 

available: one based on TreeTagger (Schmid, 1994) 

and one based on Hunpos (Halácsy et al., 2007), an 

open source reimplementation of TnT (Brants, 2000). 

 Morph Splitter: splits the POS of each token into 

separate POS and morphology attributes and also 

splits clitic forms into two or more tokens (e.g. the 

verb “avercelo” becomes “aver- ce- lo”). 

 Parser: parses sentences producing dependency parse 

trees. The module takes as input a stream of vectors of 

tokens, and produces a stream of sentences. It uses 

DeSR, a state-of-the-art multilingual dependency 

parser based on the Shift/Reduce paradigm (Attardi, 

2006; Attardi et al., 2007; Attardi et al., 2009). 

A few semantic analysis modules are also available; as the 

previous modules, they consume and produce a stream of 

vectors of tokens, adding specific semantic attributes to 

the structure Token: 

 Named Entity Tagger: identifies and classifies atomic 

elements such as person names, organizations, 

locations, temporal expressions, quantities, 

percentages etc. 

 SuperSense Tagger: assigns a semantic category to 

nouns, adjectives and verbs, corresponding to the 

WordNet lexicographer class labels (Fellbaum, 1998). 

Both tools use a Maximum Entropy classifier provided in 

the Tanl library. 

The Tanl Indexer produces a special full-text search index 

enriched with syntactic and semantic information. The 

index is organized in multiple layers, so that at each 

document position a stack of values is present. Each layer 

represents a different token attribute, e.g. form, lemma, 

POS, NE, SuperSense and dependency relations. The 

index also maintains information on sentence boundaries 

so that the search can return sentences matching queries 

rather than documents. An additional inverted index is 

also present that allows searching for pairs of word in a 

given syntactic relation. A special query language allows 

expressing queries involving not just words, but any 

attributes of tokens and in particular dependency paths in 

the parse trees. Typical boolean, proximity and phrase 



operators allow forming even more complex queries. 

Figure 3: Sample Tanl pipeline. 

Figure 3 shows an example of a full Tanl pipeline built 

with some of the available modules. 

Applications 

As a case study for the Tanl suite we annotated two 
significant subset of Wikipedia: the English Wikipedia, 
consisting in over 3 million articles for a total of 
29.320.747 sentences and the Italian Wikipedia, 
consisting of over 660.000 articles for a total of 5.507.225 
sentences. The Wikipedia is challenging both in terms of 
size and in terms of the variety of material and topics 
covered. DeepSearch and Yahoo! Correlator are two 
applications that use the annotated Wikipedia. 

DeepSearch 
DeepSearch (DeepSearch) is a Wikipedia search engine 
that exploits syntactic and semantic annotations extracted 
from Wikipedia articles. The extended query language 
allows expressing queries that involve various attributes 
in the annotation. 
For example “Who killed Caesar?”, can be answered by 
sentences where Caesar is the object of the verb „to kill‟: 
this can be expressed in our special query language as a 
query for the word „Cesar‟ occurring as the dependent of a 
dependency labeled as „OBJ‟ and whose head is a word 
with lemma „kill‟. 
Similarly “What Edison did not invent?” can be answered 
retrieving sentences where „Edison‟ is the subject of a 
verb of category „Creation‟ (one of the Super Senses), 
with a negation as a modifier of the verb. 

Yahoo! Correlator 
Yahoo! Correlator (Yahoo! Correlator) is a search engine 
and content aggregator that extracts and organizes 
information from text, collects and displays related names, 
concepts, places, and events correlated to user queries. 
The online demo is based on an annotated version of the 
English Wikipedia processed with earlier versions of the 
Tanl pipeline tools. 

The main result page shows a synthetic page assembled 
from several Wikipedia entries matching the search, 
grouped using the Wikipedia category structure. 
Additional pages display names of people, places on a 
map, concepts or events in a timeline related to those 
found in answers to the query. 

Dependency Parser 
A dependency parser can be built with a few lines of 
scripting similar to those presented in Section 0. This can 
be turned into a Web service for processing multiple 
requests by creating the transforms just once: 

ss = SentenceSplitter('italian.punkt') 

tk = Tokenizer() 

pt = PosTagger('italian.ttagger') 

ms = MorphSplitter() 

pa = Parser.create('italian.MLP') 

A pipe is created connecting these modules each time a 
request is received to parse a string text: 

p1 = [text] 

p2 = ss.pipe(p1) 

p3 = tk.pipe(p2) 

p4 = pt.pipe(p3) 

p5 = ms.pipe(p4) 

p6 = pa.pipe(p5) 

ret = "" 

for s in p6: 

   ret += c.toString(s) + "\n" 

return ret 

A Web service actually running this code is available at 
http://paleo.di.unipi.it/parse (Tanl Parser). The parser 
used is the DeSR dependency parser, which uses a 
MultiLayer Perceptron model and produces parse trees 
annotated using the Tanl Dependency Notation (Tanl 
Dependency Notation). The output parse trees are 
displayed graphically in HTML or can be obtained in the 
CoNLL X format (CoNLL X Format). 
TornadoWeb (TornadoWeb) is used as an application 
server for Python. 

Performance 

The parse service described above is capable of parsing 
sentences of a dozen tokens in 10-20 milliseconds. 
A batch pipeline from pure text to parse trees can process 
typically four Wikipedia articles per second. As a 
consequence, by parallelizing the process on a dozen of 
nodes, the whole Italian Wikipedia can be processed in 
about 4 hours. 

Conclusions 

We presented the software architecture underlying the 

Tanl suite. The benefits of the pipeline can be summarized 

as follows:  

 Data pipeline: modules share a common data model 

based on a flexible and extensible representation of 

tokens which are passed along the pipe; 

 Processing on demand: processing is data-driven and 

each stage pulls data as needed from the previous 

stages; 

 Data granularity: the blocks of data traversing the 

pipeline are smaller than in the other toolsets. This 

reduces memory requirements and improves latency. 

Enumerator<line> 

Sentence Splitter 

Enumerator<Vector<Token>> 

Tokenizer 

Enumerator<Vector<Token>> 

Word Aggregator 

Enumerator<Vector<Token>> 

Pos Tagger 
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SuperSense Tagger 

Enumerator<Vector<Token>> 

Parser 

Anaphora Tagger NamedEntity Tagger 

PlainText 

http://paleo.di.unipi.it/parse


 Efficiency: core algorithms are written in C++; 

 Flexibility: Python wrappers allow configuring 

pipelines using simple scripts and activating or 

monitoring the pipelines by inserting intermediate 

stages; 

 Parallelism: collections can be partitioned and several 

pipes can be run in parallel on a cluster using a 

modified version of Hadoop Streaming (Tanl 

Hadoop). 
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OpenNLP: http://opennlp.sourceforge.net/ 
Quex: http://quex.sourceforge.net/ 
SWIG: http://www.swig.org/ 
Tanl Dependency Notation: 

http://medialab.di.unipi.it/wiki/Tanl_Tagsets 
Tanl Hadoop Streaming: 

http://medialab.di.unipi.it/wiki/Hadoop 
Tanl Parser: http://paleo.di.unipi.it/parse 
TornadoWeb: http://www.tornadoweb.org/ 
UIMA: http://incubator.apache.org/uima/ 
Yahoo! Correlator: http://sandbox.yahoo.com/Correlator 
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