
The Tanl Pipeline

Giuseppe Attardi, Stefano Dei Rossi, Maria Simi
Dipartimento di Informatica, Università di Pisa

Largo B. Pontecorvo 3, I-56127 Pisa, Italy

E-mail: attardi@di.unipi.it, deirossi@di.unipi.it, simi@di.unipi.it

Abstract

Tanl (Natural Language Text Analytics) is a suite of tools for text analytics based on the software architecture paradigm
of data pipelines. Tanl pipelines are data driven, i.e. each stage pulls data from the preceding stage and transforms them
for use by the next stage. Since data is processed as soon as it becomes available, processing delay is minimized
improving data throughput. The processing modules can be written in C++ or in Python and can be combined using few
lines of Python scripts to produce full NLP applications. Tanl provides a set of modules, ranging from tokenization to
POS tagging, from parsing to NE recognition. A Tanl pipeline can be processed in parallel on a cluster of computers by
means of a modified version of Hadoop streaming. We present the architecture, its modules and some sample
applications.

Introduction

Text analytics involves many tasks ranging from simple

text collection, extraction, and preparation to linguistic

syntactic and semantic analysis, cross reference analysis,

intent mining and finally indexing and search. A complete

system must be able to process textual data of any size and

structure, to extract words, to classify documents into

categories (taxonomies or ontologies), and to identify

semantic relationships.

A full analytics application requires coordinating and

combining several tools designed to handle specific

subtasks. This may be challenging since many of the

existing tools have been developed independently with

different requirements and assumptions on how to process

the data.

Several suites for NLP (Natural Language Processing) are

available for performing syntactic and semantic data

analysis, some as open source and other as commercial

products. These toolsets can be grouped into two broad

software architecture categories:

 Integrated Toolkits: these provide a set of classes and

methods for each task, and are typically bound to a

programming language. Applications are

programmed using compilers and standard

programming environments. Examples in this

category are: LingPipe (LingPipe), OpenNlp

(OpenNLP), NLTK (NLTK).

 Component Frameworks: these use generic data

structures, described in a language independent

formalism, and each tool consumes/produces such

data; a special compiler transforms the data

descriptions into types for the target programming

language. Applications are built using specific

framework tools. Examples in this category are:

GATE (GATE), UIMA (UIMA).

Both GATE and UIMA are based on a workflow software

architecture, where the framework handles the workflow

among the processing stages of the application, by means

of a controller that passes data among the components

invoking their methods. Each tool accepts and returns the

same type of data and extends the data it receives by

adding its own information, as shown using different

colors in Figure 1: the Tokenizer adds annotations to

represent the start and end of each token, the PosTagger

adds annotations representing the POS for each token.

Since the controller handles the whole processing in a

single flow, each processing component receives the

whole collection and returns the whole collection. If the

collection is big, this might require large amounts of

memory.

Figure 1: Workflow Software Architecture.

In this paper we present an alternative architecture based

on the notion of data pipeline. The Tanl pipeline (Natural

Language Text Analytics) uses both generic and specific

data structures, and components communicate directly

exchanging data through pipes, as shown in Figure 2.

Since each tool pulls the data it needs from the previous

stage of the pipeline, only the minimum amount of data

passes through the pipeline, therefore reducing the

memory footprint and improving the throughput. The

figure shows single documents being passed along, but

the granularity can be even smaller: for instance a module

might just require single tokens or single sentences. This

would be hard to handle with a workflow architecture,

since the controller does not know which amount of data

Controller

PosTagger Tokenizer

each tool requires.

Related work

We present an overview of some representative NLP

toolsets and highlight the differences with the approach

adopted for the Tanl pipeline.

Integrated Toolkits

NLTK (Natural Language Toolkit) is a suite of libraries

and programs written in Python for symbolic and

statistical natural language processing (Steven et al.,

2009). For each task NLTK provides a specific API,

implemented by several alternative modules. For example

there are several chunker modules providing the

ChunkParserI interface, classifier modules providing the

ClassifierI interface, etc. Each interface specifies

different data types, for instance the ChunkParserI

interface operates on tokens represented as tuples (word,

tag), the ParserI interface accepts a string and returns a

Tree. Since many modules were developed independently,

sometimes they provide their own API that extends the

generic one. For instance one implementation of a

dependency parser requires as input two lists, a list of

tokens and a list of tags, another implementation operates

on files, hence it creates an intermediate temporary file.

Workflow Frameworks

GATE (General Architecture for Text Engineering) is a

Java framework organized according to three concepts:

language resources, processing resources and the

controller. A GATE application handles the following

types of data:

 Features: a set of name/values pairs;

 Annotation: consists of a tuple (start, end, type,

features), the start and end character positions in the

text, the type of the annotation and the features

associated to the annotation;

 Document: consists of a triple (content, annotations,

features), where the content is the text of the

document, annotations are the annotations in the

document and features are those associated to the

document.

 Corpus: a list of Documents.

In the following example, two processing resources are

created (a Tokenizer and a PosTagger), a language

resource is opened (a Corpus) and a controller is created

of type SerialAnalyserController. The language and

processing resources are supplied to the controller which

supervises and coordinates the overall workflow: at each

analysis step it passes data to a processing resource, gets

back the enriched results and passes them along to the

next step.

SerialAnalyserController sac =

 Factory.createResource(

 "SerialAnalyserController", …);

FeatureMap params = Factory.newFeatureMap();

sac.add(Factory.createResource(“Tokeniser”,

 params));

sac.add(Factory.createResource(“PosTagger”,

 params));

Corpus corpus = …;

sac.setCorpus(corpus);

sac.execute();

UIMA (Unstructured Information Management

Architecture) is a general framework for the analysis of

text and other media. The fundamental UIMA data model

is called Common Analysis Structure (CAS): it provides

data modeling, definition and retrieval facilities for the

annotations stored in it. Annotations are defined in a

hierarchically organized type system rooted in a basic

type that contains the start and end position in the

document as well as a set of features. Processing is

performed by Analysis Engines (AE) according to a

simple I/O logical interface model: each AE gets a CAS as

input and produces a CAS as output. Typically each AE

analyzes a CAS containing a document and adds more

metadata to the CAS structure.

Each UIMA component, written in Java or C++,

implements interfaces defined by the framework and

provides self-describing metadata via XML descriptor

files. An application can be created by joining together

various components as shown in the following example.

AnalysisEngine tokAnnotator =

 produceAnalysisEngine(…);

AnalysisEngine posAnnotator =

 produceAnalysisEngine(…);

ArrayList<AnalysisEngineMetaData> mdl =

 new ArrayList<…>();

mdl.add(tokAnnot.getAnalysisEngineMetaData());

mdl.add(posAnnot.getAnalysisEngineMetaData());

CAS aCAS = createCAS(mdl);

aCAS.setDocumentText(getTextFromFile(…));

tokenAnnotator.process(aCAS);

posAnnotator.process(aCAS);

Two AEs are created, a tokenizer and a POS tagger. Then

a CAS is created that contains both metadata from the

tokenizer and the POS tagger. The CAS is given to both

the AEs in sequence and each adds its own annotations.

The framework manages the AEs and the data flow

between them.
A CAS Consumer processes the CAS produced by an AE.

Tokenizer

PosTagger

Figure 2: Tanl data pipeline.

http://nltk.googlecode.com/svn/trunk/doc/api/nltk.chunk.api.ChunkParserI-class.html
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.classify.api.ClassifierI-class.html
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.chunk.api.ChunkParserI-class.html

For example one can collect all annotations of type
Entity with the following code:

ArrayList<String> entities = new …;

JFSIndexRepository idx =

 CAS…getJFIndexRepository();

Iterator<Entity> it =

idx.getAnnotationIndex(Entity.type).iterator()

;

while (it.hasNext()) {

 Entity en = it.next();

 entities.add(en.getCoveredText());

}

UIMA additionally provides capabilities to wrap

components as network services.
The JULIES NLP Toolsuite consists in a collection of
UIMA components (JULIES NLP).

Tanl design

The Tanl architecture is based on a data pipeline paradigm

(Figure 2) and allows integrating modules written in

different languages.

The approach has the advantage that each component is

directly connected to the other ones through pipes, so it is

not necessary to wait until the end of one processing phase

before starting the next one. As a tool produces the first

result it is immediately passed to the next one through the

pipeline without producing intermediate data structures.

Another advantage of this approach is that it is possible to

compose a Tanl pipeline using a general scripting

language, for example Python or Perl, instead of

introducing ad-hoc tools.

Most of the Tanl tools exploit quantitative and statistical

machine learning methods and they require an annotated

training corpus for creating statistical models of the data.

Software architecture

Pipeline
The pipeline components can be distinguished into three
basic types:

 Source: creates an initial pipe (e.g. a document reader,

reading from a text file and creating a stream of tokens

to be sent through the pipeline);

 Transform: receives data from one pipe and produces

output on another pipe;

 Sink: consumes the output of a pipe.

For example a source can be created as an instance of

SentenceSplitter and connected in pipe to an input

stream:

ss = SentenceSplitter('ita.punkt').pipe(stdin)

The pipe can then be connected to other tools performing

various tasks such as tokenization, POS tagging and

parsing as follows:

wt = Tokenizer().pipe(ss)

pt = PosTagger('italian.pos').pipe(wt)

pa = Parser.create('italian.MLP').pipe(pt)

Each line in the above example represents a

transformation stage in the pipeline. No processing of

data happens while the pipeline is being built.

Processing in the assembled pipeline only starts when a

sink is connected to the pipeline and starts drawing items

from it, in a fully data-driven process. Each stage in the

pipeline, when requested for the next item, requests items

from its preceding stage in order to produce the next

output.

A sink can just be defined through a standard Python

iterator pulling data from the last stage of the pipeline:

ret = ""

for s in pa:

 ret += string(s) + "\n"

return ret

Using a general purpose scripting language for

composing the pipeline avoids the need for compilers and

other development tools. Special processing can be added

at any stage of the pipeline for whatever need with a few

lines of code and exploiting the facilities of Python.

For example, if one needs to monitor what is happening at

a certain stage in the pipeline, a tee component can be

added for analyzing the items passing through that stage.

Here is an example of a tee used for printing all items after

the POS tagging stage:

pt = PosTagger('italian.pos').pipe(wt)

tee = Tee(printSink, pt)

pa = Parser.create('italian.MLP').pipe(tee)

The first argument to the Tee constructor is a sink through
which items have to be pushed. However, since sinks
behave in a pull mode, the Tee has to create an inversion
of control, turning a sink into a pipe, by exploiting the
functional mechanisms of Python.

class Tee:

 def __init__(self, func, arg):

 self.func = func

 self.arg = arg

 def next(self):

 aux = self.arg.next()

 func(aux)

 return aux

The next method of the Tee applies the function to the
item (in this case the printing function) before passing the
item itself to the next module in the pipeline.
An alternative solution would be to run sinks within
separate threads and adopting an asynchronous streaming
model, where each consumer processes data at its own
pace. This however involves providing buffering in the
components, partly defeating the purpose of a data driven
pipeline, where data is produced only when requested and
processed immediately.
A disadvantage of an integrated multi-language pipeline
is dealing with debugging: since at the scripting language
level the pipeline components are only visible as black
boxes, it is hard to step into their execution for debugging
code. An instrumented version of the Python runtime is
required in order to start a process in debugging mode.

Metadata handling

As data passes through a pipeline, global or specific

metadata might need to be collected. For example,

Wikipedia articles contain metadata information such as

hypertext links, internal references as well as internal

document structure such as titles and sections. These data

are useful for certain modules of the pipeline, but

unnecessary or unmanageable for others.

Workflow systems like GATE or UIMA store these as

annotations in a global structure like the CAS. Since in

Tanl items are passed along the pipe, there is no place to

store global data.

Our solution consists in storing metadata in the tokens,

using a field called context. A context contains a set of

key/value pairs representing metadata. Contexts can be

nested, referring to a parent context, for representing

nested structures such as sections within documents or

XML trees. Tokens that belong to the same context share

the same context object, so that memory overhead is

reduced, even using a distributed representation rather

than a global structure.

Implementation

Enumerators and Tokens

Each module of the Tanl pipeline consumes a stream

produced by a previous module and produces a stream.

Streams consist of tokens or combinations of tokens, e.g.

sentences which are sequence of tokens.

Tokens are the basic data structure type that all

components manipulate. The token data structure was

designed to be extensible, so that each tool can add to it its

own annotations, which are passed along to later stages.

A token contains a string that represents its form and an

arbitrary number of attributes and links. Attributes are

simple key/value pairs, while links are labeled arcs

referring to other tokens through their id:

struct Token {

 string form; ///< word form

 Attributes attributes;

 Links links;

 Context* context; ///< context

};

struct Link {

 int target; ///< the ID of the target

 string label; ///< the label for the link

};

In the implementation of attributes though, we avoid the

naive solution of using a hash table, since this would

entail a significant cost for each token: instead the token

only contains the attribute values and an index of attribute

names is used to retrieve an attribute by name. The index

is shared among all the tokens in a Corpus.

A Corpus represents the common aspects of a collection

of documents, including the tongue, the list of token

attributes, the attribute name index, the file format and it

also provides methods for writing and reading sentences

from corpus documents.

A stream is defined through a generic class Enumerator

that provides methods to advance to the next item and to

access it:

template <class T>

class Enumerator {

public:

 virtual bool MoveNext() = 0;

 virtual T Current() = 0;

 virtual void Reset() {}

};

Listing 1: Generic Enumerator interface

Each module provides an interface for connecting to a

pipeline:

template <class Tin, Tout>

struct IPipe {

 Enumerator<Tout>* pipe(Enumerator<Tin>&);

};

Listing 2: Pipeline interface

Language Integration
C++ modules can be invoked from scripting languages by
means of wrappers created with SWIG (SWIG), an
automated tool for generating wrappers directly from
code. In particular Tanl provides predefined wrappers for
Python.

C++ Enumerators as Python iterators

SWIG allows exposing C++ objects and methods to

Python, but an even tighter integration is provided that

allows operating on C++ objects in a more convenient

way. In particular the standard Python iterator constructs,

for instance for x in pipe: …x…, can be used to process

pipeline streams. Since the Python iterator protocol

consists of a single method next() and termination is

obtained by raising an exception, a magic trick is required

in the SWIG code in order to conform to this protocol:

%exception Tanl::Enumerator<Item>::next() {

 $action

 if (!result) {

 PyErr_SetObject(PyExc_StopIteration,

 Py_None);

 return NULL;

 }

};

This SWIG notation is used to add a few lines to the
wrapper for method next() that will raise the required
exception.

Memory management

Since objects are passed between C++ and Python, stored

within wrappers, memory must be managed properly so

that objects are released when no longer in use. This is

normally handled by telling to SWIG which objects must

remain under control by Python. Python uses reference

counting, and when an object is no longer accessible, it

automatically calls its C++ destructor.

However there are cases where this mechanism is not

sufficient, for example when a pipe is created like this:

pp = Parser.create("model").pipe(sr)

both a parser object and a parser proxy that wraps it are

created. Then a pipe is created which refers to the parser

object and assigned to the variable pp. The parser should

survive as long as pp exists. However Python destroys the

parser proxy, since it has no references to it, and calls the

parser C++ destructor. In order to avoid this, a reference

count is added to the C++ parser object, reflecting the

number of Python objects referring to it. The C++

destructor is only invoked when this count goes to 0. In

order to maintain this counter, it must be incremented

when the pipe is created from Python. This can be done in

SWIG with the following rule:

%exception Parser::pipe {

 $action

 arg1->incRef(); // arg1 is the parser object

}

When the count of the pipe proxy reaches zero, Python

calls the pipe destructor.

Similarly, the parser counter must be decremented when

the pipe proxy that embeds the parser gets destroyed. This

is done with:

%feature("unRef")

Tanl::Enumerator<Tanl::Sentence*>

"$this->Dispose();"

which will call the following method on the pipe:

void ParserPipe::Dispose() { parser.decRef();

 delete this; }

that will decrement/release the parser before deleting the

pipe. Finally, in order to keep in synch the reference count

of the parser proxy, it must be updated whenever Python

creates a reference to it, by using these SWIG rules:

%feature("ref") Parse "$this->incRef();"

%feature("unref") Parse "$this->decRef();"

A reference count mechanism is also required to manage

Context objects used in tokens, since their lifetime

duration is independent from that of the token where they

appear.

Map Reduce

A Tanl pipeline can be processed in parallel using the

Map/Reduce pattern, for instance using Apache Hadoop

(Hadoop). The data to be processed is partitioned into

subsets, each of which is assigned for processing to a node

in the cluster.

The mapper and reducer functions are normally written in

Java, but the framework also provides a facility called

Hadoop streaming that allows running any executable as a

mapper or reducer.

Unfortunately the standard implementation of Hadoop

streaming does not ensure that the outputs of each mapper

are combined by the reducer preserving the original order.

To overcome this problem we modified the

implementation (Tanl Hadoop Streaming) by adding a

sequence number to each document passed to the mapper

and introducing a reducer that uses these numbers for

recombining the documents in the original order.

Pipeline Modules

The following modules are currently available as part of

the Tanl pipeline:

 Sentence Splitter: splits the text into sentences,

producing an enumerator of strings, each representing

a sentence. The module is written in Python and is

based on the Punkt Tokenizer from the NLTK suite,

which implements the technique by Kiss and Strunk

(Kiss & Strunk, 2006).

 Word Tokenizer: deals with the segmentation of a

sentence into tokens, producing a stream of vector of

tokens. The module consists of C++ code produced

using Quex (Quex), a generator of lexical analyzers,

capable of handling Unicode characters.

 Word Aggregator: combines polyrematic expressions

of common use into a single token (e.g. “a meno che”

becomes “a_meno_che”).

 POS Tagger: enriches the structure Token representing

a token within a sentence with attributes representing

the PoS and lemma. Two alternative taggers are

available: one based on TreeTagger (Schmid, 1994)

and one based on Hunpos (Halácsy et al., 2007), an

open source reimplementation of TnT (Brants, 2000).

 Morph Splitter: splits the POS of each token into

separate POS and morphology attributes and also

splits clitic forms into two or more tokens (e.g. the

verb “avercelo” becomes “aver- ce- lo”).

 Parser: parses sentences producing dependency parse

trees. The module takes as input a stream of vectors of

tokens, and produces a stream of sentences. It uses

DeSR, a state-of-the-art multilingual dependency

parser based on the Shift/Reduce paradigm (Attardi,

2006; Attardi et al., 2007; Attardi et al., 2009).

A few semantic analysis modules are also available; as the

previous modules, they consume and produce a stream of

vectors of tokens, adding specific semantic attributes to

the structure Token:

 Named Entity Tagger: identifies and classifies atomic

elements such as person names, organizations,

locations, temporal expressions, quantities,

percentages etc.

 SuperSense Tagger: assigns a semantic category to

nouns, adjectives and verbs, corresponding to the

WordNet lexicographer class labels (Fellbaum, 1998).

Both tools use a Maximum Entropy classifier provided in

the Tanl library.

The Tanl Indexer produces a special full-text search index

enriched with syntactic and semantic information. The

index is organized in multiple layers, so that at each

document position a stack of values is present. Each layer

represents a different token attribute, e.g. form, lemma,

POS, NE, SuperSense and dependency relations. The

index also maintains information on sentence boundaries

so that the search can return sentences matching queries

rather than documents. An additional inverted index is

also present that allows searching for pairs of word in a

given syntactic relation. A special query language allows

expressing queries involving not just words, but any

attributes of tokens and in particular dependency paths in

the parse trees. Typical boolean, proximity and phrase

operators allow forming even more complex queries.

Figure 3: Sample Tanl pipeline.

Figure 3 shows an example of a full Tanl pipeline built

with some of the available modules.

Applications

As a case study for the Tanl suite we annotated two
significant subset of Wikipedia: the English Wikipedia,
consisting in over 3 million articles for a total of
29.320.747 sentences and the Italian Wikipedia,
consisting of over 660.000 articles for a total of 5.507.225
sentences. The Wikipedia is challenging both in terms of
size and in terms of the variety of material and topics
covered. DeepSearch and Yahoo! Correlator are two
applications that use the annotated Wikipedia.

DeepSearch
DeepSearch (DeepSearch) is a Wikipedia search engine
that exploits syntactic and semantic annotations extracted
from Wikipedia articles. The extended query language
allows expressing queries that involve various attributes
in the annotation.
For example “Who killed Caesar?”, can be answered by
sentences where Caesar is the object of the verb „to kill‟:
this can be expressed in our special query language as a
query for the word „Cesar‟ occurring as the dependent of a
dependency labeled as „OBJ‟ and whose head is a word
with lemma „kill‟.
Similarly “What Edison did not invent?” can be answered
retrieving sentences where „Edison‟ is the subject of a
verb of category „Creation‟ (one of the Super Senses),
with a negation as a modifier of the verb.

Yahoo! Correlator
Yahoo! Correlator (Yahoo! Correlator) is a search engine
and content aggregator that extracts and organizes
information from text, collects and displays related names,
concepts, places, and events correlated to user queries.
The online demo is based on an annotated version of the
English Wikipedia processed with earlier versions of the
Tanl pipeline tools.

The main result page shows a synthetic page assembled
from several Wikipedia entries matching the search,
grouped using the Wikipedia category structure.
Additional pages display names of people, places on a
map, concepts or events in a timeline related to those
found in answers to the query.

Dependency Parser
A dependency parser can be built with a few lines of
scripting similar to those presented in Section 0. This can
be turned into a Web service for processing multiple
requests by creating the transforms just once:

ss = SentenceSplitter('italian.punkt')

tk = Tokenizer()

pt = PosTagger('italian.ttagger')

ms = MorphSplitter()

pa = Parser.create('italian.MLP')

A pipe is created connecting these modules each time a
request is received to parse a string text:

p1 = [text]

p2 = ss.pipe(p1)

p3 = tk.pipe(p2)

p4 = pt.pipe(p3)

p5 = ms.pipe(p4)

p6 = pa.pipe(p5)

ret = ""

for s in p6:

 ret += c.toString(s) + "\n"

return ret

A Web service actually running this code is available at
http://paleo.di.unipi.it/parse (Tanl Parser). The parser
used is the DeSR dependency parser, which uses a
MultiLayer Perceptron model and produces parse trees
annotated using the Tanl Dependency Notation (Tanl
Dependency Notation). The output parse trees are
displayed graphically in HTML or can be obtained in the
CoNLL X format (CoNLL X Format).
TornadoWeb (TornadoWeb) is used as an application
server for Python.

Performance

The parse service described above is capable of parsing
sentences of a dozen tokens in 10-20 milliseconds.
A batch pipeline from pure text to parse trees can process
typically four Wikipedia articles per second. As a
consequence, by parallelizing the process on a dozen of
nodes, the whole Italian Wikipedia can be processed in
about 4 hours.

Conclusions

We presented the software architecture underlying the

Tanl suite. The benefits of the pipeline can be summarized

as follows:

 Data pipeline: modules share a common data model

based on a flexible and extensible representation of

tokens which are passed along the pipe;

 Processing on demand: processing is data-driven and

each stage pulls data as needed from the previous

stages;

 Data granularity: the blocks of data traversing the

pipeline are smaller than in the other toolsets. This

reduces memory requirements and improves latency.

Enumerator<line>

Sentence Splitter

Enumerator<Vector<Token>>

Tokenizer

Enumerator<Vector<Token>>

Word Aggregator

Enumerator<Vector<Token>>

Pos Tagger

Enumerator<Vector<Token>>

Morph Splitter

Enumerator<Vector<Token>>

SuperSense Tagger

Enumerator<Vector<Token>>

Parser

Anaphora Tagger NamedEntity Tagger

PlainText

http://paleo.di.unipi.it/parse

 Efficiency: core algorithms are written in C++;

 Flexibility: Python wrappers allow configuring

pipelines using simple scripts and activating or

monitoring the pipelines by inserting intermediate

stages;

 Parallelism: collections can be partitioned and several

pipes can be run in parallel on a cluster using a

modified version of Hadoop Streaming (Tanl

Hadoop).

Acknowledgments

Francesco Tamberi and Antonio Fuschetto participated in
the development of the Tanl pipeline; Felice Dell‟Orletta
contributed to the DeSR parser.
Partial support was provided by Yahoo! Research and by
Fondazione Cassa di Risparmio di Pisa.

References

G. Attardi. Experiments with a Multilanguage
non-projective dependency parser. In Proc. of the Tenth
CoNLL. 2006.

G. Attardi, A. Chanev, M. Ciaramita, F. Dell'Orletta and
M. Simi. Multilingual Dependency Parsing and
Domain Adaptation using DeSR. Proc. the CoNLL
Shared Task Session of EMNLP-CoNLL 2007. Prague,
CZ. 2007.

G. Attardi, F. Dell‟Orletta, M. Simi, J. Turian. Accurate
Dependency Parsing with a Stacked Multilayer
Perceptron. Proc. of Workshop Evalita 2009. 2009.

T. Brants. TnT–A Statistical Part-of-Speech Tagger, Proc.
of ANLP-NAACL Conf. 2000.

C. Fellbaum, WordNet An Electronic Lexical Database.
MIT Press, 1998.

P. Halácsy, A. Kornai, C. Oravecz. HunPos – an open

source trigram tagger, In Proc. of the Demo and Poster
Sessions of the 45th Annual Meeting of the ACL, Prague,
Czech Republic 209–212 (2007)

T. Kiss and J. Strunk. Unsupervised multilingual sentence
boundary detection, Computational Linguistics.
Cambridge, USA: MIT Press, 2006, vol. 3-(4).

H. Schmid. Probabilistic Part-of-Speech Tagging Using
Decision Trees. In Proc. of the International
Conference on New Methods in Language Processing,
44-49 (1994)

B. Steven, E. Klein and E. Loper. Natural Language
Processing with Python. O'Reilly Media Inc. 2009.

CoNLL X Format:
http://depparse.uvt.nl/depparse-wiki/DataFormat

DeepSearch: http://semawiki.di.unipi.it/demo.html
GATE: http://gate.ac.uk/
Hadoop: http://hadoop.apache.org/
JULIE NLP:

http://www.julielab.de/Resources/Software/NLP_Tool
s.html

LingPipe: http://alias-i.com/lingpipe/
NLTK: http://www.nltk.org/
OpenNLP: http://opennlp.sourceforge.net/
Quex: http://quex.sourceforge.net/
SWIG: http://www.swig.org/
Tanl Dependency Notation:

http://medialab.di.unipi.it/wiki/Tanl_Tagsets
Tanl Hadoop Streaming:

http://medialab.di.unipi.it/wiki/Hadoop
Tanl Parser: http://paleo.di.unipi.it/parse
TornadoWeb: http://www.tornadoweb.org/
UIMA: http://incubator.apache.org/uima/
Yahoo! Correlator: http://sandbox.yahoo.com/Correlator

http://depparse.uvt.nl/depparse-wiki/DataFormat
http://semawiki.di.unipi.it/demo.html
http://gate.ac.uk/
http://hadoop.apache.org/
http://www.julielab.de/Resources/Software/NLP_Tools.html
http://www.julielab.de/Resources/Software/NLP_Tools.html
http://alias-i.com/lingpipe/
http://www.nltk.org/
http://opennlp.sourceforge.net/
http://quex.sourceforge.net/
http://www.swig.org/
http://medialab.di.unipi.it/wiki/Tanl_Tagsets
http://medialab.di.unipi.it/wiki/Hadoop
http://paleo.di.unipi.it/parse
http://www.tornadoweb.org/
http://incubator.apache.org/uima/
http://sandbox.yahoo.com/Correlator

